
TP R320 : Introduction à la Virtualisation avec
Vagrant

Auteur: Guillaume Urvoy-Keller / Amaury BOLLER

Date: 13 janvier 2025

Révision 3 Décembre 2025

Consigne: Vous devez rédiger un compte-rendu à envoyer à l'enseignant(e) en fin de séance.

1. VirtualBox : Autopsie d'une VM

L'objectif de cette partie est de comprendre ce qu'est une machine virtuelle (VM) au niveau de

l'hyperviseur (VirtualBox) avant d'utiliser un outil d'automatisation comme Vagrant.

1. Créez une nouvelle machine virtuelle depuis l'interface graphique de VirtualBox :

Nom : Ubuntu-Test
Type : Linux
Version : Ubuntu (64-bit)
Laissez toutes les autres valeurs par défaut (mémoire, disque, etc.).

2. Démarrez la VM. (Elle va probablement échouer au boot car il n'y a pas d'OS installé, c'est normal).

3. Q1.3 – Processus VirtualBox. Listez les processus actifs de VirtualBox sur votre machine hôte et
identifiez leur rôle.

Astuce : Sous Windows, utilisez le Gestionnaire des tâches ou Get-Process en

PowerShell. Sous Linux/macOS, utilisez ps aux | grep VirtualBox .

Aidez-vous de la documentation officielle (Chapitre 10) : VirtualBox Technical Background.

4. Q1.4 – Inventaire des fichiers. Localisez le répertoire où VirtualBox stocke les fichiers de la VM
que vous venez de créer.

Analysez chaque fichier présent dans ce dossier :

Quel est son extension ?
Est-ce un fichier texte (ASCII/XML) ou binaire ?

Quel est son rôle précis ?

5. Q1.5 – Analyse du disque virtuel.

https://www.virtualbox.org/manual/ch10.html#technical-components

Quelle est la taille du fichier représentant le disque dur sur votre machine hôte ?

Comparez cette taille avec la taille "déclarée" lors de la création de la VM (souvent 10 Go par
défaut). Pourquoi y a-t-il une différence ? (Cherchez la notion de provisionnement

dynamique).

6. Q1.6 – Commande VBoxManage. Exécutez VBoxManage list vms et copiez l'extrait de sortie

correspondant à la VM nouvellement créée. Quel est l'intérêt de cette commande pour les

administrateurs ?

7. Q1.7 – Fichiers de configuration. Quel fichier texte (extension .vbox) décrit l'ensemble de la

configuration matérielle de la VM ? Montrez (capture ou extrait) qu'il s'agit bien de XML lisible.

2. Vagrant : Premiers pas

Vagrant est un outil permettant de créer et configurer des environnements de développement virtuels

reproductibles et portables.

2.1 Création d'une première VM Ubuntu

1. Créez une arborescence de travail propre :

mkdir -p ~/Vagrant/VM1

cd ~/Vagrant/VM1

2. Initialisez votre environnement Vagrant avec une image Ubuntu récente (Ubuntu 22.04 LTS
"Jammy Jellyfish") :

vagrant init ubuntu/jammy64

Cette commande crée un fichier Vagrantfile dans le répertoire courant.

3. Démarrez la VM :

vagrant up

Observez les logs qui défilent. Vagrant télécharge l'image (si elle n'est pas déjà présente),

l'importe dans VirtualBox, et configure le réseau.

4. Connectez-vous à la VM en SSH :

vagrant ssh

Vous êtes maintenant dans la VM.

5. Q2.5 – Interfaces réseau. Analysez la configuration réseau de la VM :

Quelles sont les interfaces réseaux actives ? (Utilisez ip a ou ifconfig).

Quelle est l'adresse IP de l'interface eth0 (ou enp0s3) ? À quoi sert cette interface (NAT) ?

6. Q2.6 – Fichiers VirtualBox vs Vagrant. Retournez sur votre machine physique (tapez exit).

Allez dans le répertoire de VirtualBox où cette nouvelle VM est stockée.

Comparez les fichiers avec ceux de la partie 1. Le format du disque est-il le même (VDI vs
VMDK) ?

Consultez la documentation pour comprendre les différences : VirtualBox Disk Image Files.

7. Q2.7 – Versions logicielles. Quelle est la version de Vagrant (vagrant --version) et celle de

VirtualBox (VBoxManage --version) installées sur votre poste ?

8. Q2.8 – Arrêt propre. Quelle commande utilisez-vous pour arrêter proprement la VM (sans la
détruire) ? Quels sont les messages affichés par Vagrant/VirtualBox lors de cet arrêt ?

3. Personnalisation de la VM et Provisioning

Le fichier Vagrantfile est écrit en Ruby. Il décrit la configuration de votre machine.

3.1 Provisioning Shell (Partie 1)

Le "provisioning" permet d'installer et configurer des logiciels automatiquement au démarrage de la VM.

1. Q3.1 – Lecture sélective du Vagrantfile. Éditez le fichier Vagrantfile dans

~/Vagrant/VM1 .

Vagrant génère beaucoup de commentaires. Pour voir uniquement les lignes actives, vous
pouvez utiliser :

grep -vE "^\s*#" Vagrantfile | grep -vE "^\s*$"

2. Q3.2 – Bloc de provisioning. Ajoutez (ou décommentez et modifiez) le bloc de provisioning pour

installer le serveur web Apache :

https://www.virtualbox.org/manual/ch05.html

config.vm.provision "shell", inline: <<-SHELL

 apt-get update

 apt-get install -y apache2

SHELL

3. Q3.3 – Commande vagrant provision . Appliquez les changements sur la VM en cours

d'exécution :

vagrant provision

4. Q3.4 – Contrôles dans la VM. Vérifiez que le serveur Web fonctionne (depuis l'intérieur de la VM via

vagrant ssh) :

(a) Le service est-il actif ? (systemctl status apache2)

(b) Le port 80 est-il en écoute ? (ss -ltn ou netstat -antp)

(c) Testez le serveur localement : curl http://localhost

5. Q3.5 – Blocage côté hôte. Accès depuis l'hôte :

Essayez d'accéder au site web depuis le navigateur de votre machine physique. Cela échoue.
Pourquoi ?

6. Q3.6 – Lecture des options réseau. Configuration Réseau :

Il existe 3 méthodes principales pour accéder aux services de la VM depuis l'hôte. Identifiez-
les dans les commentaires du Vagrantfile :

1. Port Forwarding (Redirection de port)
2. Private Network (Réseau privé / Host-only)

3. Public Network (Pont / Bridged)

7. Q3.7 – Redirection de port. Mise en pratique :

Configurez une redirection de port dans le Vagrantfile :

config.vm.network "forwarded_port", guest: 80, host: 8080

Appliquez la modification (nécessite un redémarrage) :

vagrant reload

Testez l'accès depuis votre navigateur physique : http://localhost:8080 .

8. Q3.8 – Comparatif des options réseau. Réflexion : Quels sont les avantages et inconvénients de

chaque mode réseau (Forwarded Port vs Private Network vs Public Network) ?

9. Q3.9 – provision vs reload --provision . Expliquez la différence entre vagrant

provision (sur une VM déjà démarrée) et vagrant reload --provision .

3.2 Dossiers Partagés (Synced Folders)

Vagrant permet de partager des dossiers entre l'hôte et la VM, ce qui est idéal pour éditer du code sur

l'hôte et l'exécuter dans la VM.

1. Q3.10 – Préparation du contenu web. Sur votre machine hôte, dans ~/Vagrant/VM1 , créez un

dossier site_content .

2. Q3.11 – Page d'accueil personnalisée. Créez un fichier index.html dans ce dossier :

<h1>Bienvenue sur ma VM Vagrant !</h1>

3. Q3.12 – Montage d'un dossier partagé. Modifiez le Vagrantfile pour monter ce dossier dans

/var/www/html (la racine d'Apache) :

Remplacez le dossier par défaut d'Apache

config.vm.synced_folder "./site_content", "/var/www/html"

(Note : Assurez-vous que le provisioning shell n'écrase pas cette configuration ou ne crée pas de

conflits).

4. Q3.13 – Redémarrage avec synchro. Appliquez les changements :

vagrant reload

5. Q3.14 – Validation côté navigateur. Testez : Rafraîchissez la page http://localhost:8080 .

Vous devriez voir votre nouveau fichier HTML. Modifiez le fichier sur l'hôte, rafraîchissez la page :
la modification est instantanée.

6. Q3.15 – Pourquoi le provisioning est optionnel ? Expliquez pourquoi Vagrant n'exécute pas
automatiquement le provisioning à chaque démarrage.

7. Q3.16 – Vérification finale. Indiquez la commande (ou l'URL) utilisée pour afficher la page
vagrantsite exposée par Apache et joignez une capture/sortie démontrant la bonne prise en

compte des changements.

3.3 Création d'une "Box" personnalisée (Packaging)

Si votre VM est parfaitement configurée, vous pouvez en faire un modèle (une "box") pour la réutiliser.

1. Q3.17 – Préparation de la box. Préparez la VM pour l'export.

Il est conseillé de nettoyer le cache apt (apt-get clean) avant, pour réduire la taille.

2. Q3.18 – Commande vagrant package . Créez le package :

vagrant package

Cela crée un fichier package.box .

3. Q3.19 – Ajout de la box à la bibliothèque. Ajoutez cette box à votre liste locale :

vagrant box add --name ma-box-web package.box

4. Q3.20 – Inventaire des boxes. Vérifiez :

vagrant box list

Où sont stockées physiquement ces boxes sur votre machine ? (~/.vagrant.d/boxes).

5. Q3.21 – Emplacement des boxes. Listez le contenu de ~/.vagrant.d/boxes et identifiez les

images installées.

6. Q3.22 – Nettoyage du package. Est-ce que l'on peut effacer /Vagrant/VM1/package.box

(avec une commande rm) sans impacter la box ajoutée dans Vagrant ? Justifiez.

4. Vagrant Avancé

4.1 Vagrant Cloud

HashiCorp (l'éditeur de Vagrant) propose un catalogue d'images : Vagrant Cloud.

1. Q4.1 – Rechercher des images fiables. Recherchez les images officielles pour

debian/bookworm64 (Debian 12) et almalinux/9 (Clone RHEL).

2. Q4.2 – Critères de confiance. Comment savoir si une image est "de confiance" ? (Regardez le

nombre de téléchargements, l'auteur, la date de mise à jour).

https://app.vagrantup.com/boxes/search

4.2 Commandes utiles et Snapshots

1. Q4.3 – État global.

vagrant global-status

Cette commande liste toutes les VMs Vagrant actives sur votre machine, quel que soit le
dossier.

2. Q4.4 – Comparer les snapshots.

Avant de faire une manipulation risquée, créez un instantané :

vagrant snapshot save backup_avant_crash

Pour restaurer :

vagrant snapshot restore backup_avant_crash

Quelle est la différence entre un snapshot Vagrant et un snapshot VirtualBox classique ?

3. Q4.5 – Suspension vs reprise.

Pour mettre en pause la VM sans l'éteindre (sauvegarde de la RAM sur disque) :

vagrant suspend

Pour reprendre : vagrant resume .

4.3 Vagrantfile Avancé (Exemple commenté)

Q4.6 – Analyse d'un Vagrantfile avancé. Analysez ce Vagrantfile plus complexe. Quelles

fonctionnalités utilise-t-il ?

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "web-server" do |web|

 web.vm.box = "ubuntu/jammy64"

 # Réseau : Port forwarding

 web.vm.network "forwarded_port", guest: 80, host: 8888

 # Dossier partagé avec type spécifique (rsync)

 web.vm.synced_folder "./data", "/opt/data", type: "rsync",

 rsync__args: ["--verbose", "--archive", "--delete", "-z"]

 # Provisioning

 web.vm.provision "shell", inline: <<-SHELL

 apt-get update

 apt-get install -y nginx

 SHELL

 # Configuration spécifique au provider VirtualBox

 web.vm.provider "virtualbox" do |v|

 v.name = "MonServeurWebAvance"

 v.memory = 2048

 v.cpus = 2

 v.gui = false # Mode headless (sans écran)

 end

 end

end

5. Vagrant Multi-machines

Vagrant permet de définir plusieurs VMs dans un seul Vagrantfile . C'est très utile pour simuler un

réseau (ex: un serveur web et un serveur de base de données).

1. Créez un nouveau dossier ~/Vagrant/Multi et créez le Vagrantfile suivant :

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrant.configure("2") do |config|

 # Configuration commune

 config.vm.box = "ubuntu/jammy64"

 # VM 1 : Base de données

 config.vm.define "db" do |db|

 db.vm.hostname = "db01"

 db.vm.network "private_network", ip: "192.168.56.10"

 end

 # VM 2 : Serveur Web

2. Démarrez l'environnement :

vagrant up

3. Q5.3 – Tests de connectivité.

Connectez-vous au serveur web : vagrant ssh web

Pinguez la base de données : ping 192.168.56.10 ou ping db01 .

Est-ce que cela fonctionne ? Pourquoi ?

4. Q5.4 – Boucles Ruby (exemple à analyser).

Étudiez l'extrait suivant :

(1..5).each do |i|

 host_id = format("%02d", i)

 config.vm.define "web#{host_id}" do |node|

 node.vm.box = "ubuntu/jammy64"

 node.vm.hostname = "web#{host_id}"

 node.vm.network "private_network", ip: "192.168.56.2#{i}"

 end

end

Expliquez précisément ce que cette boucle produit (noms/hôtes créés, adresses attribuées,

rôle de format).

Indiquez pourquoi ce type de construction est utile dans un Vagrantfile multi-

machines.

6. Pour aller plus loin (Hors TP)

 config.vm.define "web" do |web|

 web.vm.hostname = "web01"

 web.vm.network "private_network", ip: "192.168.56.11"

 # Provisioning : on ajoute l'IP de la DB dans le fichier hosts du Web

 web.vm.provision "shell", inline: <<-SHELL

 echo "192.168.56.10 db01" >> /etc/hosts

 SHELL

 end

end

Providers : Vagrant peut piloter autre chose que VirtualBox (VMware, Hyper-V, Docker, AWS...).

Provisioners : Au lieu de scripts Shell, on utilise souvent Ansible, Puppet ou Chef pour des
configurations complexes et maintenables.

Packer : Outil complémentaire pour créer vos propres "boxes" de manière industrielle.

